Integrasi Filler Berbasis Limbah Pertanian terhadap Sifat Material Bioplastik Polylactic Acid (PLA): Tinjauan Literatur Terstruktur
DOI:
https://doi.org/10.54082/jupin.1532Kata Kunci:
Bioplastik, Filler, Limbah Pertanian, Polylactic Acid (PLA)Abstrak
Krisis lingkungan akibat akumulasi plastik berbasis minyak bumi mendorong pengembangan material alternatif yang lebih ramah lingkungan. Polylactic Acid (PLA), sebagai bioplastik biodegradable dari sumber terbarukan, menjanjikan solusi pengganti plastik konvensional, namun sifatnya yang rapuh dan produksinya yang mahal membatasi penggunaannya. Kajian ini bertujuan untuk menganalisis pengaruh penambahan filler berbasis limbah pertanian terhadap peningkatan sifat fisik dan mekanik PLA. Studi ini merupakan tinjauan literatur terstruktur dengan menganalisis 32 artikel ilmiah dari 2017–2025. Hasil kajian menunjukkan bahwa filler dari limbah seperti sekam padi (5% berat) dapat meningkatkan tensile strength hingga 55%, yield stress sebesar 88%, dan menurunkan laju transmisi oksigen (OTR) hingga 52%. Kulit delima (15% berat) memperkuat komposit dengan peningkatan modulus tarik sebesar 42% dan impact strength sebesar 41%. Biochar dari biomassa karbonisasi juga meningkatkan kekakuan dan stabilitas termal hingga suhu degradasi awal naik 15–18°C. Sebaliknya, filler dari tapioka dan cangkang telur menunjukkan penurunan kekuatan mekanik pada konsentrasi tinggi (>20–30%). Pemanfaatan limbah pertanian sebagai filler dalam PLA berpotensi meningkatkan performa material sekaligus mendukung ekonomi sirkular. Namun, keberhasilannya sangat tergantung pada jenis filler, komposisi, dan kesesuaian interaksi antarfasa. Kajian lanjutan diperlukan untuk mengoptimalkan formulasi komposit.
Referensi
Abdul Azam, F. A., Rajendran Royan, N. R., Yuhana, N. Y., Mohd Radzuan, N. A., Ahmad, S., & Sulong, A. B. (2020). Fabrication of Porous Recycled HDPE Biocomposites Foam: Effect of Rice Husk Filler Contents and Surface Treatments on the Mechanical Properties. Polymers, 12(2), 475. https://doi.org/10.3390/polym12020475
Ahmad, A., Banat, F., Alsafar, H., & Hasan, S. W. (2024). An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conversion and Biorefinery, 14(3), 3057–3076. https://doi.org/10.1007/s13399-022-02581-3
Ali, W., Ali, H., Gillani, S., Zinck, P., & Souissi, S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 21(3), 1761–1786. https://doi.org/10.1007/s10311-023-01564-8
Betancourt, N. G., & Cree, D. E. (2017). Mechanical Properties of Poly (lactic acid) Composites Rein-forced with CaCO3 Eggshell Based Fillers. MRS Advances, 2(47), 2545–2550. https://doi.org/10.1557/adv.2017.473
Bucio-Galindo, , Adolfo, Lopez Velazquez, L. Y., & Canché Escamilla, G. (2023). Bioplastics: Envi-ronment-friendly materials and their production technologies. Agro Productividad. https://doi.org/10.32854/agrop.v16i4.2373
Butbunchu, N., & Pathom-Aree, W. (2019). Actinobacteria as Promising Candidate for Polylactic Acid Type Bioplastic Degradation. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02834
Cecchi, T., Giuliani, A., Iacopini, F., Santulli, C., Sarasini, F., & Tirillò, J. (2019). Unprecedented high percentage of food waste powder filler in poly lactic acid green composites: synthesis, characteri-zation, and volatile profile. Environmental Science and Pollution Research, 26(7), 7263–7271. https://doi.org/10.1007/s11356-019-04187-1
Chen, X., Kroell, N., Li, K., Feil, A., & Pretz, T. (2021). Influences of bioplastic polylactic acid on near-infrared-based sorting of conventional plastic. Waste Management & Research: The Journal for a Sustainable Circular Economy, 39(9), 1210–1213. https://doi.org/10.1177/0734242X211003969
Cree, D., Owuamanam, S., & Soleimani, M. (2023). Mechanical Properties of a Bio-Composite Pro-duced from Two Biomaterials: Polylactic Acid and Brown Eggshell Waste Fillers. Waste, 1(3), 740–760. https://doi.org/10.3390/waste1030044
European Bioplastics e.V. (2024). Bioplastics Market Development Update 2024. https://www.european-bioplastics.org/bioplastics-market-development-update-2024/
Gbadeyan, O. J., Linganiso, L. Z., & Deenadayalu, N. (2023). Assessment and Optimization of Ther-mal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films. Polymers, 15(6), 1557. https://doi.org/10.3390/polym15061557
Hermansyah, H., Carissa, R., Faiz, M. B., & Deni, P. (2014). Food Grade Bioplastic Based on Corn Starch with Banana Pseudostem Fibre/Bacterial Cellulose Hybrid Filler. Advanced Materials Re-search, 997, 158–168. https://doi.org/10.4028/www.scientific.net/AMR.997.158
Hossain, S., Rahman, M. A., Ahmed Chowdhury, M., & Kumar Mohonta, S. (2020). Plastic pollution in Bangladesh: A review on current status emphasizing the impacts on environment and public health. Environmental Engineering Research, 26(6), 200535–0. https://doi.org/10.4491/eer.2020.535
Jacob, J., Robert, V., Valapa, R. B., Kuriakose, S., Thomas, S., & Loganathan, S. (2022). Poly(lactic acid)/Polyethylenimine Functionalized Mesoporous Silica Biocomposite Films for Food Packag-ing. ACS Applied Polymer Materials, 4(7), 4632–4642. https://doi.org/10.1021/acsapm.1c01551
Lamberti, F. M., Ingram, A., & Wood, J. (2021). Synergistic Dual Catalytic System and Kinetics for the Alcoholysis of Poly(Lactic Acid). Processes, 9(6), 921. https://doi.org/10.3390/pr9060921
Li, R., Zhu, X., Peng, F., & Lu, F. (2023). Biodegradable, Colorless, and Odorless PLA/PBAT Bio-plastics Incorporated with Corn Stover. ACS Sustainable Chemistry & Engineering, 11(24), 8870–8883. https://doi.org/10.1021/acssuschemeng.3c00691
Masssijaya, S. Y., Lubis, M. A. R., Nissa, R. C., Nurhamiyah, Y., Nugroho, P., Antov, P., Lee, S.-H., Papadopoulos, A. N., Kusumah, S. S., & Karlinasari, L. (2023). Utilization of Spent Coffee Grounds as a Sustainable Resource for the Synthesis of Bioplastic Composites with Polylactic Ac-id, Starch, and Sucrose. Journal of Composites Science, 7(12), 512. https://doi.org/10.3390/jcs7120512
Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental Im-pact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials, 13(21), 4994. https://doi.org/10.3390/ma13214994
Nikiema, J., & Asiedu, Z. (2022). A review of the cost and effectiveness of solutions to address plastic pollution. Environmental Science and Pollution Research, 29(17), 24547–24573. https://doi.org/10.1007/s11356-021-18038-5
Pudełko, A., Postawa, P., Stachowiak, T., Malińska, K., & Dróżdż, D. (2021). Waste derived biochar as an alternative filler in biocomposites - Mechanical, thermal and morphological properties of bio-char added biocomposites. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123850
Rahayu, P., Agustina, S., Pramesty, M., Rosalina, R., & Putri, D. K. (2021). Pengaruh Waktu Penga-dukan pada Proses Poliblend Poly Lactic Acid dengan Poly Ethylene Glycol-400 Terhadap Vis-kositas dan Densitas Bioplastik. CHEESA: Chemical Engineering Research Articles, 4(2), 100. https://doi.org/10.25273/cheesa.v4i2.8945.100-108
Ramadhani, A. A., & Firdhausi, N. F. (2021). Potensi Limbah Sisik Ikan Sebagai Kitosan dalam Pem-buatan Bioplastik. JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI, 6(2), 90. https://doi.org/10.36722/sst.v6i2.782
Ramesh, M., Rajeshkumar, L., Sanjay, M., & Siengchin, S. (2025). Sustainable biocomposites based on polylactic acid and agro waste biofillers for lightweight applications: Fabrication and proper-ties. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/08927057251322165
Ramesh, S., & Preetha, R. (2024). Preparations of Nano Cellulose Particles from Agricultural Wastes for Eco-Friendly Biodegradable Take Away Bowls for Food. ACS Agricultural Science & Tech-nology, 4(11), 1216–1229. https://doi.org/10.1021/acsagscitech.4c00425
Rezvani Ghomi, E. R., Khosravi, F., Saedi Ardahaei, A. S., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854
Sánchez-Acosta, D., Rodriguez-Uribe, A., Álvarez-Chávez, C. R., Mohanty, A. K., Misra, M., López-Cervantes, J., & Madera-Santana, T. J. (2019). Physicochemical Characterization and Evaluation of Pecan Nutshell as Biofiller in a Matrix of Poly(lactic acid). Journal of Polymers and the Envi-ronment, 27(3), 521–532. https://doi.org/10.1007/s10924-019-01374-6
Setiawan, A., Anggraini, F. D. M., Ramadani, T. A., Cahyono, L., & Rizal, M. C. (2021). Pemanfaatan Jerami Padi Sebagai Bioplastik Dengan Menggunakan Metode Perlakuan Pelarut Organik. METANA, 17(2), 69–80. https://doi.org/10.14710/metana.v17i2.42254
Shaik, S. A., Schuster, J., Shaik, Y. P., & Kazmi, M. (2022). Manufacturing of Biocomposites for Do-mestic Applications Using Bio-Based Filler Materials. Journal of Composites Science, 6(3), 78. https://doi.org/10.3390/jcs6030078
Sivakumar, A., Srividhya, S., Prakash, R., & Subbarayan, M. R. (2024). Exploring the effects of eco-friendly and biodegradable biocomposite with PLA incorporating eggshell and walnut powder as fillers. Global Nest Journal, 26(3), 1–6. https://doi.org/10.30955/gnj.005471
Varghese, S. A., Pulikkalparambil, H., Promhuad, K., Srisa, A., Laorenza, Y., Jarupan, L., Nampitch, T., Chonhenchob, V., & Harnkarnsujarit, N. (2023). Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers, 15(3), 648. https://doi.org/10.3390/polym15030648
Yusoff, N. H., Pal, K., Narayanan, T., & de Souza, F. G. (2021). Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging appli-cations. Journal of Molecular Structure, 1232. https://doi.org/10.1016/j.molstruc.2021.129954
Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the Gap for Bioplastic Use in Food Packag-ing: An Update. Environmental Science & Technology, 54(8), 4712–4732. https://doi.org/10.1021/acs.est.9b03755
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Khairunisa Betariani, Puji Rahayu, Rachmadi Tutuka

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.